permutation Release 0.4.0

John T. Wodder II

CONTENTS

1 Installation 3
2 Examples 5
3 API 7
4 Indices and tables 13
Python Module Index 15
Index 17

GitHub | PyPI | Documentation | Issues | Changelog
permutation provides a Permutation class for representing permutations of finitely many positive integers in Python. Supported operations \& properties include inverses, (group theoretic) order, parity, composition/multiplication, cycle decomposition, cycle notation, word representation, Lehmer codes, and, of course, use as a callable on integers.
permutation, Release 0.4.0

INSTALLATION

permutation is written in pure Python with no dependencies. Just use pip (You have pip, right?) to install:
python3 -m pip install permutation

EXAMPLES

```
>>> from permutation import Permutation
>>> p = Permutation(2, 1, 4, 5, 3)
>>> p.to_cycles()
[(1, 2), (3, 4, 5)]
>>> print(p)
(1 2)(3 4 5)
>>> print(p.inverse())
(1 2)(3 5 4)
>>> p.degree
5
>>> p.order
6
>>> p.is_even
False
>>> p.lehmer(5)
27
>>> q = Permutation.cycle(1,2,3)
>>> print(p * q)
(2 4 5 3)
>>> print(q * p)
(1 3 4 5)
>>> for p in Permutation.group(3):
#. print(p)
#"
1
(1 2)
(2 3)
(1 3 2)
(1 2 3)
(1 3)
```


class permutation.Permutation(*img: int)

A Permutation object represents a permutation of finitely many positive integers, i.e., a bijective function from some integer range $[1, n]$ to itself.

The arguments to the constructor are the elements of the permutation's word representation, i.e., the images of the integers 1 through some n under the permutation. For example, Permutation (5, 4, 3, 6, 1, 2) is the permutation that maps 1 to 5,2 to 4,3 to itself, 4 to 6,5 to 1 , and 6 to 2 . Permutation() (with no arguments) evaluates to the identity permutation (i.e., the permutation that returns all inputs unchanged).

Permutations are hashable and immutable. They can be compared for equality but not for ordering/sorting.
__bool__() \rightarrow bool
A Permutation is true iff it is not the identity
__call__(i: int) \rightarrow int
Map an integer through the permutation. Values less than 1 are returned unchanged.

Parameters

i (int) -

Returns

the image of i under the permutation
__mul__
(other: Permutation) \rightarrow Permutation
Multiplication/composition of permutations. p * q returns a Permutation r such that $\mathrm{r}(\mathrm{x})==$ $p(q(x))$ for all integers x.

Parameters

other (Permutation) -

Return type

Permutation
__pow__(other: int) \rightarrow Permutation
Power/repeated composition of permutations. $\mathrm{p} * *$ q returns a Permutation r such that $\mathrm{p} * * 0==$ Permutation(), $\mathrm{p} * * \mathrm{n}=\mathrm{p} * *(\mathrm{n}-1) * \mathrm{p}$ and $\mathrm{p} * *-\mathrm{n}==\mathrm{p}$.inverse() $* * \mathrm{n}$.

Parameters

other (int) -

Return type

Permutation
__str__() \rightarrow str
Convert a Permutation to cycle notation. The instance is decomposed into cycles with to_cycles(),
each cycle is written as a parenthesized space-separated sequence of integers, and the cycles are concatenated.
str(Permutation()) is "1".
This is the inverse of parse.

```
>>> str(Permutation(2, 5, 4, 3, 1))
'(1 2 5)(3 4)'
```

classmethod cycle(*cyc: int) \rightarrow Permutation
Construct a cyclic permutation from a sequence of unique positive integers. If $\mathrm{p}=$ Permutation. cycle (*cyc), then $p(\operatorname{cyc}[0])==\operatorname{cyc}[1], p(\operatorname{cyc}[1])==\operatorname{cyc}[2]$, etc., and $p(\operatorname{cyc}[-1])==$ $\operatorname{cyc}[0]$, with p returning all other values unchanged.

Permutation. cycle() (with no arguments) evaluates to the identity permutation.

Parameters

cyc - zero or more unique positive integers

Returns

the permutation represented by the given cycle

Raises

ValueError -

- if cyc contains a value less than 1
- if cyc contains the same value more than once
property degree: int
The degree of the permutation, i.e., the largest integer that it permutes (does not map to itself), or 0 if there is no such integer (i.e., if the permutation is the identity)

classmethod from_cycles(*cycles: Iterable[int]) \rightarrow Permutation

Construct a Permutation from zero or more cyclic permutations. Each element of cycles is converted to a Permutation with cycle, and the results (which need not be disjoint) are multiplied together. Permutation.from_cycles() (with no arguments) evaluates to the identity permutation.

This is the inverse of to_cycles.

Parameters

cycles - zero or more iterables of unique positive integers

Returns

the Permutation represented by the product of the cycles

Raises

ValueError -

- if any cycle contains a value less than 1
- if any cycle contains the same value more than once

classmethod from_left_lehmer $(x$: int $) \rightarrow$ Permutation

Returns the permutation with the given left Lehmer code. This is the inverse of left_lehmer ().

Parameters

\mathbf{x} (int) - a nonnegative integer

Returns

the Permutation with left Lehmer code x

Raises

ValueError - if x is less than 0

classmethod from_lehmer $(x:$ int, $n:$ int $) \rightarrow$ Permutation

Calculate the permutation in S_{n} with Lehmer code x. This is the permutation at index x (zero-based) in the list of all permutations of degree at most n ordered lexicographically by word representation.

This is the inverse of lehmer.

Parameters

- \mathbf{x} (int) - a nonnegative integer
- \mathbf{n} (int) - the degree of the symmetric group with respect to which x was calculated

Returns

the Permutation with Lehmer code x

Raises

ValueError - if x is less than 0 or greater than or equal to the factorial of n
classmethod group ($n:$ int) \rightarrow Iterator[Permutation]
Generates all permutations in S_{n}, the symmetric group of degree n, i.e., all permutations with degree less than or equal to n . The permutations are yielded in ascending order of their left Lehmer codes.

Parameters

\mathbf{n} (int) - a nonnegative integer

Returns

a generator of all Permutations with degree n or less

Raises

ValueError - if n is less than 0

inverse() \rightarrow Permutation

Returns the inverse of the permutation, i.e., the unique permutation that, when multiplied by the invocant on either the left or the right, produces the identity

Return type

Permutation

```
inversions() }->\mathrm{ int
```

New in version 0.2.0.
Calculate the inversion number of the permutation. This is the number of pairs of numbers which are in the opposite order after applying the permutation. This is also the Kendall tau distance from the identity permutation. This is also the sum of the terms in the Lehmer code when in factorial base.

Returns

the number of inversions in the permutation

Return type

int
property is_even: bool
Whether the permutation is even, i.e., can be expressed as the product of an even number of transpositions (cycles of length 2)
property is_odd: bool
Whether the permutation is odd, i.e., not even
isdisjoint (other: Permutation) \rightarrow bool
Returns True iff the permutation and other are disjoint, i.e., iff they do not permute any of the same integers

Parameters

other (Permutation) - a permutation to compare against

Return type

bool
left_lehmer () \rightarrow int
Encode the permutation as a nonnegative integer using a modified form of Lehmer codes that uses the left inversion count instead of the right inversion count. This modified encoding establishes a degree-independent bijection between permutations and nonnegative integers, with from_left_lehmer() converting values in the opposite direction.

Returns

the permutation's left Lehmer code

Return type

int
lehmer (n : int) \rightarrow int
Calculate the Lehmer code of the permutation with respect to all permutations of degree at most n. This is the (zero-based) index of the permutation in the list of all permutations of degree at most n ordered lexicographically by word representation.

This is the inverse of from_lehmer.

Parameters

n(int) -

Return type

int

Raises

ValueError - if n is less than degree
next_permutation() \rightarrow Permutation
Returns the next Permutation in left Lehmer code order
property order: int
The order (a.k.a. period) of the permutation, i.e., the smallest positive integer n such that multiplying n copies of the permutation together produces the identity
classmethod parse (s: str) \rightarrow Permutation
Parse a permutation written in cycle notation. This is the inverse of \qquad str_ \qquad

Parameters

\mathbf{s} (str) - a permutation written in cycle notation

Returns

the permutation represented by s

Return type

Permutation

Raises

ValueError - if s is not valid cycle notation for a permutation
permute (xs: Iterable[int]) \rightarrow tuple[int, ...]
Reorder the elements of a sequence according to the permutation; each element at index i is moved to index p(i).

Note that p. permute $(\operatorname{range}(1, \mathrm{n}+1)$) == p.inverse().to_image(n) for all integers n greater than or equal to degree.

Parameters

xs - a sequence of at least degree elements

Returns

a permuted sequence

Return type

tuple[int, ...]

Raises

ValueError - if len(xs) is less than degree
prev_permutation() \rightarrow Permutation
Returns the previous Permutation in left Lehmer code order

Raises

ValueError - if called on the identity Permutation (which has no predecessor)
right_inversion_count (n : Optional[int] $=$ None) \rightarrow list[int]
New in version 0.2.0.
Calculate the right inversion count or right inversion vector of the permutation through degree n, or through degree if n is unspecified. The result is a list of n elements in which the element at index i corresponds to the number of right inversions for $i+1$, i.e., the number of values $x>i+1$ for which $p(x)<p(i+1)$.

Setting n larger than degree causes the resulting list to have trailing zeroes, which become relevant when converting to \& from Lehmer codes and factorial base.

Parameters

n (Optional [int] - defaults to degree

Return type

list[int]

Raises

ValueError - if n is less than degree
property sign: int
The sign (a.k.a. signature) of the permutation: 1 if the permutation is even, -1 if it is odd
to_cycles () \rightarrow list[tuple[int, ...]]
Decompose the permutation into a product of disjoint cycles. to_cycles() returns a list of cycles in which each cycle is a tuple of integers. Each cycle c is a sub-permutation that maps $\mathrm{c}[0]$ to $\mathrm{c}[1], \mathrm{c}[1]$ to $\mathrm{c}[2]$, etc., finally mapping $c[-1]$ back around to $c[0]$. The permutation is then the product of these cycles.
Each cycle is at least two elements in length and places its smallest element first. Cycles are ordered by their first elements in increasing order. No two cycles share an element.

When the permutation is the identity, to_cycles () returns an empty list.
This is the inverse of from_cycles.

Returns

the cycle decomposition of the permutation
to_image (n : Optional[int] $=$ None) \rightarrow tuple[int, ...]
Returns a tuple of the results of applying the permutation to the integers 1 through n , or through degree if n is unspecified. If $\mathrm{v}=\mathrm{p}$.to_image (), then $\mathrm{v}[0]==\mathrm{p}(1), \mathrm{v}[1]==\mathrm{p}(2)$, etc.

When the permutation is the identity, to_image called without an argument returns an empty tuple.
This is the inverse of the constructor.

Parameters

\mathbf{n} (int) - the length of the image to return; defaults to degree

Returns

the image of 1 through n under the permutation

Return type

tuple[int, ...]

Raises

ValueError - if n is less than degree

INDICES AND TABLES

- genindex
- search

PYTHON MODULE INDEX

p

permutation, 1

Symbols

__bool__() (permutation.Permutation method), 7
__call__() (permutation.Permutation method), 7
__mul__() (permutation.Permutation method), 7
__pow__() (permutation.Permutation method), 7
__str__() (permutation.Permutation method), 7

c

cycle() (permutation.Permutation class method), 8

D

degree (permutation.Permutation property), 8

F

from_cycles() (permutation.Permutation class method), 8
from_left_lehmer() (permutation.Permutation class method), 8
from_lehmer() (permutation.Permutation class method), 9

G

group () (permutation.Permutation class method), 9

I

inverse() (permutation.Permutation method), 9 inversions() (permutation.Permutation method), 9 is_even (permutation.Permutation property), 9 is_odd (permutation.Permutation property), 9 isdisjoint() (permutation.Permutation method), 9

L

left_lehmer() (permutation.Permutation method), 10
lehmer() (permutation.Permutation method), 10

M

module
permutation, 1

N

next_permutation() (permutation.Permutation method), 10
order (permutation.Permutation property), 10
P
parse() (permutation.Permutation class method), 10
permutation
module, 1
Permutation (class in permutation), 7
permute() (permutation.Permutation method), 10
prev_permutation() (permutation.Permutation method), 11

R

right_inversion_count() (permutation.Permutation method), 11

S

sign (permutation.Permutation property), 11

T

to_cycles() (permutation.Permutation method), 11
to_image() (permutation.Permutation method), 11

